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$ Ecole Normale Superieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France 

Received 11 February 1977 

Abstract. A non-perturbative method of solving the Dyson-Schwinger equations in QED, 
which preserves the gauge identities, is considered. The starting p i n t  is determined by an 
integral equation for the electron propagator spectral function which is explicitly solved in 
the Landau gauge; this determines the Green functions in successive orders of iteration 
since no spurious infinities arise beyond the usual renormalizable ones. 

1. Introduction 

A favourite pastime of theoreticians has been to look for approximate solutions of the 
complete set of equations linking the Green functions in various quantum field models 
like QED. Most of these approximations amount to summing specific sets of perturba- 
tion graphs with the foreknowledge or hope that the selection will provide the dominant 
contributions in the kinematic region of interest. In gauge theories most such approxi- 
mations unfortunately violate the gauge constraints among the Green functions and this 
makes it difficult to judge the correctness or otherwise of the solutions found. There is 
one approximation method however which has the virtue of preserving the Ward 
identities at every stage: this is Salam’s gauge technique (1963); by contrast, here it 
becomes difficult to judge the ‘order of approximation’ because the iteration procedure 
is basically non-perturbative. In early papers the gauge technique was applied to 
electrodynamics of mesons and spinors. The zeroth-order Green functions were 
obtained by truncating the Dyson-Schwinger equations so as to satisfy two-particle 
unitarity and could be simply calculated by applying first-order perturbation theory to 
the Lehmann spectral functions (Delbourgo and Salam 1964, Strathdee 1964). It then 
was verified that the resulting asymptotic behaviours of the Green functions were no 
different in the next order of iteration, signifying that the procedure was ‘asymptotically 
stable’. However it remained unclear what the iterated sum of the series would yield 
and what bearing, if any, this has on renormalization group aspects of the problem 
(Manoukian 1974). 

In this paper we wish to return to the gauge technique for QED but without resorting 
to two-particle unitarity for providing the starting point. Rather we shall solve the 
Dyson-Schwinger equation for the spinor propagator as a proper integral equation, 
neglecting photon dressing in the first place since that has no important bearing on the 
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gauge identities. We shall then use the solution to determine its influence on the photon 
self-energy and other Green functions such as the vertex part. We do not look for finite 
electrodynamics and thus get no eigenvalue equation for e’. 

2. Tbe zeroth gauge approximation 

The Ward identities between Green functions in gauge theories are now well known 
(Nishijima 1960, Rivers 1966) even for non-Abelian gauges (Lee 1974, Kluberg-Stern 
and Zuber 1975). Thus with photon legs amputated the first few identities read 

k , ’ S ( p ) r , ( p , p - k ) S ( p - k )  = S ( p - k ) - S ( p )  (1) 

(2) 
k ~s w)r, (P ’k ; pk )s (P ) 

= s(p’)rvw, p ’ + k o s ( p ’ + k ’ ) - s ( p  - m ( p  -v, p ) s ( p )  
etc, where S denotes the complete electron propagator and r stands for the fully 
amputated connected Green functions with appropriate arguments and with coupling 
constants factorized out. In QED the propagators S of the electron and D of the photon, 
and the vertex part Tr,  play a central role via the Dyson-Schwinger equations 

1 =Z,(y.p-m+Sm)S(p)-ie’Z, J 1 1 4 k S ( p ) r ~ ( p , p - k ) S ( p - k ) y D C L Y ( k )  (3) 

in which we have adopted a covariant photon gauge parametrized by the bare constant 
a. One can make the gauge identities look more obvious by replacing (5 )  with 

r,(P,p-k) =z,y, -ie2Z, J d4p’yAS(pr ) r , (p ’k ’ ;pk )DA’(k ) .  (5’)  

Multiplication of (5 ‘ )  by k w  yields (3) immediately, and in that sense incorporates it. 
In the gauge technique (Salam 1963) one seeks solutions to equations (3)-(5) 

consistent with the Ward-Takahashi identities (l), (2), etc. To see how these can be 
determined iteratively, let us begin with the Lehmann spectral representation for the 
spinor propagator in the formt 

where p( W) is a positive definite distribution in a non-gauge theory. 

t The form 

with mo = Z j  mpz(s) ds, 1 = 2 pl(s) ds is probably more familiar. The connection with the form ( 6 )  is 
provided by 

p(W)=e(W)(Wp*(W2)+mp,(W2)). 
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Since 
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the simplest possible (but by no means the unique) solution of (1) is to take 

One can of course add to (7) any arbitrary transverse function of the type (k2qpu - 
k,k,)F"(p, p - k)  which would have no effect on the gauge identities but we neglect this 
to begin with-a more precise reason follows shortly. Likewise a possible solution of 
identity (2) is provided by 

S ( p f ) F 3 p ' k f ;  pk)S(p) 
1 =I dWP(W) y . p f -  w 

.(..,. ( p ' + k ' ) -  w yF + yH y . ( p' - k ) - w 4 y . p - w 
1 1 1 

(8) 

and so on. In analogy to (7) this is a weighted sum over electron mass distributions of 
the tree graphs. Indeed if we go to the mass shell of the charged spinor lines by picking 
out pole terms through the substitution p ( W) + S ( W - m) we get precisely the Born 
terms. We shall take this criterion as defining the zeroth gauge approximation r ( O )  of all 
the char ed line Green functions; the photon lines are left undressed in this initial stage. 
Thus r are functionals of the electron propagator S which is all we have to find, and 
this we can do by solving the electron line equation (3) as a true integral equation 
without resorting to two-particle unitarity. Using the basic I"'') we can then determine 
the photon propagator, vertex part and other connected functions in a recursive wayt 
via 

(8 

D - l ( n + l )  = zAk-2+z42 #n)r(n)S(n),, I 
K [ r ( n  '1 sh ) r (n  )s(n) * J  r(n+1)=z,y+z4 

the hope being that the iterations will converge as n +CO to the final true answers. 
Certainly for the iteration scheme to make sense it is necessary that higher-order 
multi-electron functions come out to be finite; otherwise all the advantages of conven- 
tional renormalizability would be lost and the gauge technique would become worth- 
less. Finiteness is guaranteed when the stability criterion TSD1'2 - l / k 2  is satisfied.-We 
shall check a posteriori that our zeroth-order expressions do obey this asymptotic 
stability property and thus do not jeopardize renormalizability. Beyond this we have to 
look for some property of p (  W) which stands out as the iterations proceed since it is 
quite clear that the entire scheme is non-perturbative and we have not exactly 

t Note that S'" = S'O' and k. r"' = k . Po) in the first iteration. 
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expansions in e 2  to guide us about what we mean about the ‘order of iteration’. 
Unfortunately we have not gone far enough in the iteration scheme to find out what it is 
except for the fact that the lowest-order spectral function (22) receives logarithmic 
corrections in succeeding orders. 

3. The zeroth Green functions 

In lowest order the equations (9) devolve to finding a solution of 

2;’ = ( y  . p - mo)S“’(p) -ie2 d4k S‘o’(p)TF’(p, p - k)S“’ (p  - k)D””“’(k) I 

where X ( p ,  W) is obtained from lowest-order perturbation theory for an electron mass 
W. Thus 

yielding X ( p ,  W )  via a dispersion integral. Recalling that 

1 = Z + I  p(W) d W  and m o = Z +  Wp(W) dW, 

let us perform our renormalizations on (10) and remove the pole term by putting 
p ( W )  = S( W- m) +c+(W). Then 

with a once-subtracted 

Im X ( W ,  m) d W’ Z( W, m) = ( W - m ) l  .rr 
(W-m)(W-  W’)’ 

Upon taking imaginary parts of (13) we remain with the integral equation 

for the spectral function cr(w>. To show that exact solutions can be found let us 
specialize to the Landau gauge U = 0 where Im X is particularly easyt and the equation 

? I t  is also relatively simple in the Yennie gauge Q = 3  where to lowest order, c(w)= 
3eZ( W 2 -  m2)c(  W)/16n2 W3 guarantees infrared finiteness but gives an ultraviolet divergence for 
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reduces to ( W’ m’) 

E ( w ) (  W -  m )  W’v( W )  
W = - - ( m ( W + m ) + l  3e’ d W u ( W r ) ( W +  Wf)W’) .  

1 6 ~ ’  

Using dimensionless variables 

w = W/m, E = -3e’/16~’, s ( 0 )  = € ( w ) w ’ u ( w ) ,  (16) 

the equation simplifies to 

This can in turn be reduced to a pair of coupled equations by making the substitution 
s ( 0 )  =wsl(w2)+s’(w2). Thus 

W 2  

(sz(w2)-sl(w2))/E =I dw“ ~ ~ ( ~ ’ ~ ) / w ~ ’ +  1 

( w 2 s 1 ( w 2 ) - s z ( w 2 ) ) / ~  = dw” s l ( w f 2 ) +  1 

1 

W 2  

Finally the pair can be reconverted into hypergeometric equations 

(Z(1 -Z)---- d’ [ 1 -Z(3 -25)1-- d (1 - E)’)sl(Z)= 0 
dZ2 d Z  

(19) 

The appropriate solutions, satisfying the boundary conditions embodied in (18) and 
incorporating an infrared? cut-off p2  are 

In terms of the original variables this gives 

t We can verify the necessity of a w 2  at the lower limit of integration if we attempt a perturbation expansion in 
.$ of equations (18). It is less obviously needed in the quoted solution (20) where we might even dispense with 
it by dropping p Z / m 2  altogether. 
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The complete zeroth-order electron propagator follows: 

1 dW2 y.psl(W2/m2)+ms2(W2/m2) 
S(P) = Y*P-m +I  w2 p2- V + i c  

and the integral? for it converges comfortably since 

Furthermore we may actually evaluate the electron renormalization constants in this 
gauge by going to asymptotic values of p in (21) or else from the formal expressions for 
the bare quantities: 

2;' = 1 + j U( W) d w = 1 + (m2/p2)2€r(1 -t)r(l -6)r(l+25)= 2 for small 6 

= m. 

This ultraviolet finiteness is, of course, characteristic of the Landau gauge and not 
expected for other values of a. 

The other Green function Po) is given in this zeroth order by bare photon lines and 
by tree graphs weighted by the just found electron mass distribution. Expressions (7) 
and (8) are particular examples. For convergence the important point is the asymptotic 
behaviour (22). 

4. Firsborder Green functions 

In the next stage of the iteration we have to evaluate D(l)  and the transverse part of I?') 
using the lowest-order D(O), r'"and S(O) just found. There are no new infinities because 
the asymptotic stability condition is amply satisfied so the 2 will just perform their usual 

t We have used the basic integral 

~ ~ a x ~ - ' ( x + y ) - ~ F ( n , b ; c ,  - x ) &  

in this and succeeding expressions. Note the reality of U in (20) and the fact that S ( p )  correctly shows a cut for 
p 2 3 m 2  in formula (21) whose discontinuity is of course U. 
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function. Concentrate first on the photon self-energy to first order, 

where it is known from QED that 

II(k2, e’ m’)=TZ;;i[ln----- A’ 11 4m2 
m2  6 k 2  

The renormalized propagator is thereby obtained as 

D:,!-’(k)= (-k2~,,+k,ky) (l+Zq I dWp(W(II(k’, W’)-II(O, W2)))-kpk&/a. 

(25) 
Since 

Il(k2, W’) - H(0, W’) 

- -- e2 5 4 ~ ’  2W2 4W2 ‘I2 [1-(4W2/k2)]”2+1 
1 27r’ [ 3 k2 + ( ‘7) ( -F) In([l - (4 W’/ k’)]”’ - I 

we see that (25) will not carry any transverse infinities if p (  W) - W with E < -1. This is 
visibly true in the Landau gauge where (22) is the zeroth solution, but in fact it is also 
true in other gauges as well because there is asymptotic stability. It may be of interest to 
spell out the first-order photon propagator to two extreme limits. 

(i) As k2+0 ,  

Therefore 

(ii) Ask2+oo 

Because dWp(W) In W is finite like Z,, in the Landau gauge, there remains a 
logarithmic dependence on k’ in D‘”; this shows that 2,’ is logarithmically infinite in 
this next order. All in all, the first-order corrections are manageable and cannot greatly 
affect the propagator S”’ when we go to the next order of iteration. 
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More significant probably are the transverse parts to the vertex part r'l) that enter 
into (9) at the next level. It is conceptually simpler to deal with this equation in the form 
(5') whereupon 

P 

T:)(p ,  p -k )Z , '  = yp -le d4p' y A S ' o ) ( p ' ) T ~ ~ ( p ' k ' ;  pk)D'O'"(k). . ' I  
Since the longitudinal part k . r(') equals k . rC0), it is already known; and so is, of course, 
the k + 0 limit via the differential Ward identity. We have not made a detailed study of 
(26) since the number of kinematic terms that can turn up lead to very complicated 
expressions. However we may note that if one goes to the electron mass shell, then 
because rC0) reduces to the Born term, the calculation is exactly the order a correction 
of the form factor in QED and cannot fail to reproduce g - 2 in this order. However we 
have no reason to believe that I"') includes the a' correction of the form factor because 
I':: may have no direct connection with Born graphs. 

To summarize our work thus far: we have found a gauge couariant solution of the 
Dyson-Schwinger equation for the electron propagator and it provides the basis of a 
subsequent iteration scheme? to yield all the remaining Green functions. The solution 
has the merit of exactly satisfying gauge identity (1) and in that sense is a significant 
generalization of the Baker et a1 (1967) solution as well as the parallel later work that 
has consisted in replacing r by the bare vertex y in the equation, including the work on 
self-consistent dynamical symmetry breaking. 
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